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Abstract— Connected and automated vehicles (CAVs) have
real-time knowledge of the immediate driving environment,
actions to be taken in the near future and information from
the cloud. This knowledge, referred to as preview information,
enables CAVs to drive safely, but can also be used to minimize
fuel consumption. Such fuel-efficient transportation has the
potential to reduce aggregate fuel consumption by billions of
gallons of gas every year in the U.S. alone. In this paper,
we propose a planning framework for use in CAVs with the
goal of generating fuel-efficient vehicle trajectories. By utilizing
vehicle-to-infrastructure (V2I) communications and on-board
sensor data, we leverage the computational power of CAVs
to generate eco-friendly vehicle trajectories. The planner uses
an eco-driver model and a predictive cost-based search to
determine the optimal speed profile for use by a CAV. To
evaluate the performance of the planner, we introduce a co-
simulation environment consisting of a CAV simulator, MAT-
LAB/Simulink and a CAV software platform called the InfoRich
Eco-Autonomous Driving (iREAD) system. The planner is
evaluated in various traffic scenarios based on real-world road
network models provided by the National Renewable Energy
Laboratory (NREL). Simulations show a savings of 14.5% in
fuel consumption with our approach.

I. INTRODUCTION

One of the most pressing issues of modern transportation
is fuel efficiency. In the United States alone, nearly 143
billion gallons of motor gasoline were consumed in 2018
[1]. Emissions from combustion have adverse effects on
the environment [2], while also creating dependence on
foreign sources of fuel. As connected and automated vehicle
technology improves, their impact on fuel consumption needs
to be studied. Fortunately, the computational power, the
connectivity, the sensing capabilities and the knowledge of
pending near-term actions of CAVs can be proactively used
to minimize fuel consumption.

In this paper, we study how the speed profiles of CAVs
can be effectively utilized to reduce fuel consumption. We
specifically focus on urban environments, where it is com-
mon to have high levels of interaction among the CAV, its
surrounding vehicles and traffic signals. We propose a Eco-
Planner framework to generate fuel-efficient driving profiles
and define vehicle behavior goals. Multi-objective optimiza-
tion based on traffic condition and vehicle characteristics is
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Fig. 1. iREAD System Architecture

performed in real-time with a speed reference generated and
passed to a Short-Term Path Planner, which is further refined
before being sent to the actuator controllers. Our iREAD
system architecture is shown in Figure 1.

Our framework provides the ability to:
1) create vehicle trajectories that emulate what a human

driver would do,
2) search through a suitably-sparse space for real-time

execution, and
3) reduce a CAV’s average fuel consumption in urban

environments.
In short, a CAV’s on-board communication and compu-

tation capabilities are used to predict and optimize the ego
vehicle’s interaction with its environment.

II. RELATED WORK
The ability for connected and automated vehicles to reduce

fuel consumption has been studied in [3]. Michel et al. show
that the energy consumption for vehicles decreases, as the
level of connectivity increases, especially at lower speeds.
Additionally, fuel consumption optimization at signalized
intersections are investigated in [4] using speed trajectory
generation through closed-form solution as well as numerical
solutions. They found that a closed-form solution is sufficient
to generate comparable energy savings while significantly
reducing computational time, making it practical for use in
online optimization.



Motion planners in autonomous vehicles have typically
been implemented as a layer in the vehicle decision-making
hierarchy [5]. Wei et al. [6] introduced a prediction-based
planning layer, which models interactions between vehicles
and focuses on reducing computational cost while preserving
planner quality. Optimization using dynamic programming
based on travel distance has been explored in [7] and [8]. A
drawback to using such a method is the inability to generate
a trajectory for a specific timeframe. Trajectory optimization
methods have been explored by Kelly [9]. Such methods
require solving non-linear programs online, which is unde-
sirable for real-time applications with an emphasis on safety.
Compared to prior work, our planner does online energy
consumption optimization by taking into account signalized
traffic intersections as well as surrounding vehicles, while
being practically implementable in CAVs.

III. ECO-PLANNER FRAMEWORK

Our planning framework consists of three steps: (1) can-
didate generation, (2) prediction, and (3) cost evaluation. In
the candidate generation stage, a set of candidate driving
strategies is generated based on headway (i.e. a planning
horizon). Then, these strategies along with information on
surrounding vehicles are sent to the Eco-Driver Model
(EDM) with a prediction engine. The EDM next generates a
series of forward-simulated speed trajectories for the next
prediction horizon (e.g., 15 secs). Finally, the prediction-
based optimizer computes the aggregated cost of each can-
didate speed trajectory and picks the optimal speed profile.

A. Eco-Driver Model

In order to generate a set of candidate trajectories, we
employ a modified version of the “Intelligent Driver Model”
[10]. The intelligent model, as described by Treiber et al., is
a car-following model which is useful when there is a lead
vehicle. A similar approach was also studied in [11], which
demonstrated improvements in vehicle energy consumption.
In order to generalize the model for scenarios that do not
include a lead vehicle, we introduce the following driver
model:
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The parameters of the Eco-Driver Model are tuned heuris-
tically to obtain the desirable characteristics of fuel-efficient
driving, while still maintaining a speed that is acceptable to
human-operated vehicles in the ego vehicle’s environment.
As presented in Equations (1-3), αmax is the maximum
acceleration, β is the desired deceleration parameter, V is
the ego vehicle’s speed, Tgap is the headway gap between

the ego and the lead vehicle, SL is the distance to the lead
vehicle, Sstop represents the distance to stop (i.e. intersection)
and VL is the lead vehicle’s speed. Vlim denotes the speed
limit for the particular stretch of road, while γ represents a
speed-limit multiplier (eg. 1.1) that allows for some slack in
the driver model. S0 and S0,stop are the minimum distances to
keep to the lead vehicle and road intersection, respectively.

The first term of Equation (1) represents the speed regula-
tor. The ego vehicle’s speed is normalized by the speed limit,
and δ can be viewed as an “aggression” factor. The second
term maintains the vehicle-following distance in the presence
of a lead vehicle. In the case that there is no lead vehicle
present, we choose a suitably large value for SL, which
diminishes the effect of the vehicle-following term. The final
term regulates the vehicle deceleration. Analogous to the
vehicle-following term, if the Eco-Driver Model predicts that
the ego vehicle will enter an intersection during a green phase
of the traffic light, Sstop will be assigned a large value to
prevent it from slowing down unnecessarily1.

One advantage of this model is the ability to independently
select the parameters. A smaller δ value typically leads to
less aggressive and more fuel-efficient driving. In the case
that the ego vehicle must come to a stop, smaller values
of δstop generate speed profiles that allow for fuel-efficient
coast-down. Figure 2 shows the trajectories generated by
the driver model for different values of δ while holding all
other parameters constant at traffic-free intersections. It can
be seen that with increasing values for δ the corresponding
acceleration increases and a higher top speed is achieved.
Similarly, Figure 3 shows the trajectories generated by the
driver model for different values of δstop under the same
driving conditions. Table I shows the parameters used for
generating the trajectories in Figure 2 and 3.

Fig. 2. Trajectories generated by the Eco-Driver Model in traffic-free
intersections while varying δ values

B. Headway Search Space

We define headway as the travel time required for the
ego vehicle to reach a lead vehicle. A buffer distance is

1We make the assumption that signal phase and timing (SPaT) informa-
tion is available at all intersections controlled by traffic lights



Fig. 3. Trajectories generated by the Eco-Driver Model in traffic-free
intersections while varying δstop values.

TABLE I
PARAMETERS USED FOR FIGURES 4 AND 5

Figure αmax β γ δ δstop
4 2 5 1 varies 2
5 2 5 1 5 varies

added to the headway, as depicted in Figure 4, for safety
considerations. As shown in Figure 5, for a look-ahead
horizon of 15 seconds, the headway search space is generated
at 5 second intervals in the prediction horizon, with the
headway range being 0.5-5 seconds. This set of headway
trajectories is passed to the Eco-Driver Model to be used
as Tgap in (2), which is then used by the Prediction-Based
Optimizer to generate a set of vehicle speed trajectories.

C. Prediction-Based Optimizer

Our prediction-based optimizer searches through candidate
trajectories generated based on the headway. Its objective is
to forward-simulate the vehicle’s trajectory and “observe”
its interactions with the lead vehicle and traffic signals. To
reduce computational cost, any trajectories which violate the
relevant speed limit are discarded and the Prediction-Based
Optimizer moves on to the next candidate trajectory in the
set. The specific steps of the Eco-Planner are presented in
Algorithm 1. The algorithm assumes that the lead vehicle
will maintain their speed throughout the prediction horizon.
This is unrealistic without knowing the intent of the lead
vehicle. In order to address this, we run the Eco-Planner at
a rate fast enough such that we only use the trajectory over
a period of time that this approximation is valid.
The cost of each candidate trajectory is calculated as follows:

Cost =
Horizon

∑
t=0

k f uelC f uel,t+kprogressCprogress,t

+ kcom f ortCcom f ort,t

(4)

The individual cost terms are:

C f uel,t = table f uel(Vt ,at) (5)

Cprogress,t =
t

max(∑t
i=0 Vi∆T,ε) (6)

Fig. 4. Vehicle Headway

Fig. 5. Headway Search Space

Ccom f ort,t = table jerk(Jt) (7)

where ε is a small value so that Cprogress is bounded.
The fuel cost is a lookup table shown in Figure 6. Figure 7

shows the lookup table for the comfort cost. Jerk was chosen
as a comfort cost due to the desire to generate trajectories
which do not rapidly accelerate or decelerate. Progress cost
is chosen as the travel time divided distance traveled, The
idea here is that shorter distance traveled over a period of
time is penalized. The relative importance of the cost factors
is adjusted with their respective weights: k f uel , kprogress, and
kcom f ort .

Fig. 6. Fuel cost lookup table

IV. TEST ENVIRONMENT
To validate our approach, we built a test environment con-

sisting of a 3D-environment simulator (Vires VTD), a MAT-



Fig. 7. Comfort cost lookup table

Algorithm 1: Prediction-Based Eco-Planner
Input : Vlead ,Vego,Slead ,Send ,Vlim,T (tra jectory set)
Output: Vehicle Trajectory Vpred

1 for i = 1 ... N ∈ T do
2 for t = 0→ prediction horizon do
3 Calculate Smin, S∗min as in (2) and (3)
4 Calculate ai,t as in (1)
5 Ji,t = (ai,t −ai,t−1)/∆T (Jerk)
6 Vi,t =Vi,t−1 +(ai,t−1∆T ) (Vehicle Speed)
7 Pi,t = Pi,t−1 +(Vi,t∆T ) (Progress)
8 Fi,t = Fuel Table(Vi,t ,ai,t)∆T (Fuel)
9 Calculate Costi,t as in (4)

10 if Vi,t >Vlim then
11 go to 1
12 end
13 end
14 if Costi <Costmin then
15 Costmin←Costi
16 Vpred ←Vi
17 end
18 end
19

LAB/Simulink model for vehicle dynamics and fuel con-
sumption, and our CAV platform. Our Eco-Planner frame-
work is then tested and evaluated within this environment.

A. The InfoRich Eco-Autonomous Driving System (iREAD)

The iREAD system is our CAV platform that the Eco-
Planner is built upon. The operation of the iREAD system is
shown in Figure 9. Given a map and a set of waypoints to
traverse, the route planner determines the path of travel. The
behavioral layer generates a set of intermediate goals which
are used by the Eco-Planner to generate a reference plan.
The Eco-Planner optimizes the reference plan for multiple
objectives: safety, fuel efficiency, comfort, and progress. The

optimized trajectory is then sent to the Short-Term Path
Planner for further refinement and to obtain a desired speed
for the actuator controller. A PID controller is used to control
the throttle position of the engine in the vehicle model, which
provides vehicle state feedback. The iREAD system is a real-
time system that is extensible to fully autonomous on-road
operation, as well as vehicle-in-the-loop (VIL) testing on a
dynamometer.

B. VIRES Virtual Test Drive

VIRES VTD [12] provides a virtual environment to test
interactions among the ego vehicle and the surrounding
traffic, traffic signals as well as the road network. VIRES
enables testing our planning framework under different
driving conditions. Adjustable parameters, including traffic
density, traffic light signal phase and timing (SPaT) and
the driver characteristics of surrounding vehicles, allow for
the emulation of urban and rural driving scenarios. Using
the number of surrounding vehicles per unit distance, we
took an average separation distance of <10m per vehicle as
heavy traffic congestion (traffic jam), and 30-50m per vehicle
as moderate traffic. Traffic surrounding the ego vehicle at
an intersection is visualized in Figure 10. Furthermore,
“virtual sensors” provide real-time data such as SPaT and
surrounding vehicles’ state to the iREAD CAV platform.

C. Vehicle Model

A high-fidelity model of our ego vehicle’s powertrain
was constructed using Simulink’s Simscape Driveline plat-
form. The vehicle model consists of a 3.6-liter V6 engine,
torque converter, 8-speed automatic transmission, and vehicle
chassis. A custom powertrain model was built using the
Simscape language, whose input signals include throttle
position, deceleration fuel cut off (DFCO), engine shut off,
and cylinder deactivation. Engine parameters include torque-
speed tables, engine inertia, fuel consumption tables and idle
reference speed.

While typically an engine’s control unit (ECU) will take
more inputs such as ambient temperature, coolant tempera-
ture and air flow rate, our simplified model uses only the
engine speed along with the throttle position sensor (TPS)
input to capture the engine dynamics and fuel consumption.
The assumption of the model is that the engine is already
at operating temperature (i.e. hot start). Vehicle data from
General Motors LLC (GM) were used to create the torque
and fuel-rate lookup table. Samples between data points were
linearly interpolated and sample points outside the range of
data points were assigned the value of the nearest data point.

The Simscape model of the vehicle body, shown in Figure
8, consists of the vehicle’s longitudinal dynamics, tire model,
brakes and all-wheel drive system with the transfer case,
as well as front and rear differentials. The vehicle body
parameters include frontal area, drag coefficient, vehicle
mass, wheel/tire radius, wheel inertia and final drive gear
were obtained through GM’s proprietary high-fidelity vehicle
model. The gain for the braking force was tuned using the
transmission output torque from the GM model to match the



Fig. 8. Vehicle Powertrain Model

Fig. 9. InfoRich Eco-Autonomous Driving System (iREAD).

Fig. 10. The VIRES simulation environment with traffic surrounding the
ego vehicle.

speed profile for the FTP-75 [13] test cycle used by the U.S.
Environmental Protection Agency for emissions testing.

V. RESULTS

To validate the approach we created a set of real-world
driving scenarios in VIRES using NREL’s Transportation
Secure Data Center (TSDC) database. The NREL TSDC
routes represent different roads, ranging from highways to
urban settings. They are representative of typical routes that
a commuter would take in the U.S. In-depth simulations
were conducted on 16 different routes. They consisted of 9
short (∼1.7 km) and 7 long (∼15 km) routes. The routes

Fig. 11. Simulated Fuel Consumption of Drive Cycles

Fig. 12. Simulation Completion Time of Drive Cycles

represented a total of 742 kilometers of simulated travel
distance. When compared to the baseline driver, the Eco-
Driver is able to achieve an average of 14.5% fuel savings
with a modest increase in travel time of 2%.

We compared the Eco-Driver model to a baseline driver
as outlined in Table II under no traffic, moderate traffic
(50m/vehicle), and heavy traffic (20m/vehicle) conditions.
The baseline driver is modeled after how an average person
would drive on a road with traffic [14]. Compared to the
baseline, the Eco-Driver has a longer preview window. We
make these assumptions based on a CAV’s sensing and com-
munication capabilities. Additionally, the baseline driver is
a constant headway follower while the Eco-Driver performs
online headway optimization. The EDM was also tuned so
that acceleration is not as ”aggressive” and increased coasting
by lowering the values of δ and δstop

Two drive cycles from the results shown in Figures 11 and
12 are particularly interesting. Drive Cycles 13 and 14 show
a large difference in fuel savings when there is no traffic. The
two road networks turn out to be very different. Figure 13
(Drive Cycle 13) shows a typical highway-driving scenario
where there are only a few stop-and-go instances. Since this
is a stretch of highway where there is no traffic, the Eco-



TABLE II
BASELINE DRIVER VS. ECO-DRIVER

Comparison Baseline Driver Eco-Driver
Preview Distance Lead Vehicle: 60m Lead Vehicle: 200m

Traffic Light and Stop Sign: 60m Traffic Light and Stop Sign: 300m
Car Following Headway (Tgap) 2s 1-5s (Headway search space)

Aggression Factor (δ ) 4 (Average human driver aggression) 2 (Lower aggression level for Eco-Driver)
Braking Factor (δstop) 2 (Average human braking factor) 0.5 (More coasting for Eco-Driver)

Fig. 13. Drive cycle 13 with no traffic (Baseline: Red, Eco: Green, Speed
Limit: Blue)

Driver tracks the speed limit and we see limited improve-
ments in fuel consumption. The same highway route, but
now populated with moderate traffic, is depicted in Figure 14.
The baseline driver follows the lead vehicle with a constant
headway. With moderate traffic, as the lead vehicle’s speed
fluctuates, so does the ego vehicle’s speed. When compared
with the Eco-Driver, the headway optimization generates a
trajectory that results in reduced fuel consumption.

In contrast, an urban scenario is shown in Drive Cycle 14
(Figure 15). In this scenario, there are plenty of instances
of stop-and-go at intersections. In such cases, we observed
much greater fuel savings as the Eco-Driver generated less
aggressive acceleration profiles while increasing the duration
of coasting during deceleration events. Since the speed of
travel is dictated more by the stop-and-go intersections and
less by the traffic, we also see that there is less variance in
fuel consumption due to traffic density.

As demonstrated by these two drive cycles, the Eco-Driver
model is able to show significant fuel savings in stop-and-
go traffic regardless of traffic densities by utilizing the SPaT
information from traffic signals and the available preview of
upcoming stops at intersections. In highway driving, when
there is moderate traffic, the Eco-Driver is also able to
outperform the baseline driver by choosing the most fuel-
efficient trajectory generated by the Eco-Driver using the
online optimization based on the headway search space. In
traffic-free highway driving, the fuel benefits obtained from

Fig. 14. Drive cycle 13 with moderate traffic (Baseline: Red, Eco: Green,
Speed Limit: Blue)

the Eco-Driver are diminished as both the baseline and Eco-
Driver attempt to drive at or near the speed limit constantly.

VI. CONCLUSIONS

In this paper, we addressed the efficiency of fuel con-
sumption using the preview information available to CAVs.
We proposed an Eco-Planner framework that utilizes an Eco-
Driver Model with heuristically-tuned parameters to enable
fuel-efficient driving. The Eco-Driver Model explores the
headway search space to generate candidate speed trajec-
tories. Using real-world drive cycles, we re-created road
networks with various different traffic densities. Virtual sen-
sors were utilized to simulate the connectivity capabilities
of CAVs. The complete Eco-Planner framework has been
implemented on our iREAD CAV platform, a real-time
system that can be realized on a real vehicle. We showed
that the iREAD system with the Eco-Planner is able to
reduce fuel consumption by an average of ∼ 14.5% with
only slight increases in the travel time of only ∼ 2%. The fuel
savings is more significant in scenarios where the ego vehicle
has greater interactions with the environment, such as lead
vehicles, traffic lights, and stop signs. The results suggest
that the iREAD system with the Eco-Planner is suitable for
use in urban and highway settings, where there are increased
interactions between the ego vehicle and its surroundings.
Some aspects of energy consumption optimization we would
like to explore in the future include: 1) replacing the PID



Fig. 15. Drive cycle 14 (Baseline: Red, Eco: Green, Speed Limit: Blue)

controller with a Model-Predictive Controller to fully utilize
the “preview” trajectory from our Eco-Planner, 2) integrating
road curvature and grade information into the Eco-Planner to
more accurately predict fuel consumption in the presence of
external disturbances, and 3) Implement a “discount factor”
as in Markov Decision Processes which will place more
weight on the cost at the beginning of the prediction horizon.
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